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Abstract

We study equity return jump risk for a large sample of emerging and developed markets, by
using an analytical framework that endogenously differentiates between jumps and smooth
variability. We find that jump risks exhibit strong commonality: The first principal component
of jump risks explains over 60% of their variation. That factor has a correlation with the VIX
of over 0.7. Thus, fluctuations in risk perceptions and global uncertainty might be responsible
for most of the variation in international jump risks. Jump risks are heterogeneous across
equity markets in terms of their expected size and frequency. Average jump sizes tend to
be larger, while jump frequency tends to be lower for emerging markets than for developed
markets. Jumps contribution to total return variability is typically higher for emerging than for
developed markets and also spikes at times of heightened jump risk.

EFM Classification: 330, 370, 630

*This research was supported by Tubitak 1001 Grant No: 117K085.
†Both authors are with the Faculty of Business, Ozyegin University, Istanbul 34794, Turkey. Emails: bil-

iana.guner@ozyegin.edu.tr and mehmet.ozsoy@ozyegin.edu.tr.

1

mailto:biliana.guner@ozyegin.edu.tr
mailto:biliana.guner@ozyegin.edu.tr
mailto:mehmet.ozsoy@ozyegin.edu.tr


Domestic and international equity returns are characterized by jumps—price moves that

are too large to be attributed to smooth return variation. Even though jumps are not

frequent events, they represent an important portion of realized returns and contribute

significantly to observed volatilities.1 Understanding the nature and drivers of jump risk

is critical for the ability of investors to manage risk of stock portfolios. Time-varying

jump risk affects the whole return distribution; thus, elevated jump risk could require

a risk premium, even if jumps end up not materializing. Furthermore, if jump risk is

priced in international equity markets, a common time-varying component across coun-

tries could also generate return correlation across countries, with crucial implications for

the diversification potential of an international portfolio.

We study jump risk of international equity index returns by using the discrete-time

GARCH-Jump model of Maheu and McCurdy (2004). The conditional jump intensity

process in that model is autoregressive, which allows us to examine statistically the time-

varying and persistent nature of jump risk.

Three novel results arise from our analysis of 38 emerging and developed equity mar-

kets, over the 1990–2015 period. First, we find that there are important differences across

international markets in terms of jump characteristics. While the expected daily jump

size is −0.43%, it can be as large as −3.5% (the case of Brazil). The median expected num-

ber of jumps differs greatly across countries as well. It is between 0.1 and 0.3 per day

for the majority of markets but for some, such as Greece, Hungary, and Japan, jumps are

expected 4 to 5 times more often. Given that in some markets jumps have high expected

magnitudes, whereas in others more frequent jumps are expected, in which markets are

jumps more prevalent? We examine the contribution of jumps to total return variability in

each market to answer this. In Brazil, jumps are responsible for about 10% of total return

variance, whereas in Ireland they account for about 60%. In general, the contribution of
1Eraker et al. (2003) show that the jump component of returns require a bigger risk premium than do smooth com-

ponents. Kapadia and Zekhnini (2019) argue that total annual return of a typical US stock is attributable to cumulative
returns from the few days with realized jumps. Maheu and McCurdy (2004) document that jumps are responsible for
a sizable portion of conditional return volatility of US stocks. Especially at times of heightened jump risk, jumps can
account for up to 90% of total volatility.
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jumps to total return variability is higher in a typical emerging market than a developed

one. The jump contribution to return variability varies through time and tends to increase

simultaneously for emerging and developed markets.

Second, we establish that despite the cross-sectional heterogeneity in jump risk among

international equity markets, there is significant commonality in the time-series dimen-

sion. Using principal component analysis, we find that the first principal component of

jump risks accounts for more than 61% of the jump risk variation. The first five compo-

nents together explain about 80% of the jump risk variation over the full sample period.

Equity jump risks co-vary more strongly than equity returns themselves. For example, the

first principal component for international equity returns captures only about 49% of the

common variability. The first principal component of jump risks has pronounced time-

series dynamic, with peaks coinciding with identifiable historical financial episodes. For

instance, its highest value is observed on Oct 14, 2008, the heart of the 2008 financial crisis.

While many of the individual jump risk series peaked around the same date, for others

the highest values were attained during idiosyncratic events. For example, Turkey’s high-

est jump risk was on April 7, 1994, coinciding with its currency and stock market crisis,

while Thailand’s was on Feb 6, 1998, in the midst of the Asian financial crisis.

Third, to understand the nature of the first principal component, we examine its re-

lationship with various macro and financial variables. We find that the first principal

component of jump risks has a correlation of 0.74 with the VIX index. This finding is sim-

ilar to that of Longstaff et al. (2011) who document similar commonality in the sovereign

CDS market. Their first principal component has a correlation of 0.61 with the VIX in-

dex. The VIX is usually interpreted as a market proxy for risk aversion and uncertainty.

Bekaert et al. (2013) document the impact of US monetary policy shocks on the VIX and

its components, while Bruno and Shin (2015) show the significant relationship between

the leverage of the US broker dealer sector and the VIX index. Our evidence suggests

that the global risk factor in international jump risks is similarly driven by fluctuations in
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global risk aversion.

The paper is organized, as follows. The main dataset we employ and its characteristics

are described in Section 2. Section 1 provides details of our analytical framework. The

estimation results and analysis of heterogeneity of jump risks are the focus of Section 3.

We discuss our results on commonality of jump risks in Section 4. Section 5 concludes.

1 Model Description

The GARCH-Jump mixed model of returns (a modification of Maheu and McCurdy (2004)’s

model) is a discrete-time model, in which variation in returns and volatilities has two

distinct components—normal (smooth) variation and jumps. An autoregressive specifi-

cation of the conditional jump intensity allows to account for the empirically-observed

clustering of jumps.

1.1 Model Setup

We consider a stock return process, evolving in discrete time. The innovations of this

process have two components: (i) normal variation, captured by term ε1,t, which can be

viewed as driven by ordinary information flow, causing smooth changes in equity prices,

and (ii) jump-related variation, captured by the term ε2,t, which could be thought of as

being a result of abrupt changes in the information set. The equity return process at time

t is specified as:

rt = µ+ ε1,t + ε2,t, (1)

where
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ε1,t
iid∼ N(0, σt)

ε2,t = Jt − E (Jt|Ft−1)

Jt =
Nt∑
j=0

Yt,j

Yt,j
iid∼ N(θ, δ), for all t and j ∈ [0, Nt]

Nt|Ft−1 ∼ Poisson(λt)

λt = E (Nt|Ft−1)

σ2
t = ω + αε2t−1 + βσ2

t−1,

where εt−1 = ε1,t−1+ ε2,t−1 is the total innovation at time t−1. The most important param-

eter is λt which represents the conditional jump intensity at time t and gives the expected

number of jumps at time t, given the information at time t − 1. The conditional jump in-

tensity has an autoregressive process, allowing for the expected number of jumps to vary

through time and capturing the empirically-observed tendency of jumps to cluster:

λt = φ0 + φ1λt−1 + φ2ξt−1. (2)

The term ξt−1 is the so-called “intensity residual”, reflecting the revision in the condi-

tional forecast of the number of jumps. It could be interpreted as the portion of the jump

intensity affected by a surprise news arrival:

ξt−1 = E (Nt−1|Ft−1)− E (Nt−1|Ft−2) (3)

=
∞∑
j=1

jP (Nt−1 = j|Ft−1)− λt−1. (4)

The expectation E (Nt−1|Ft−1) represents an ex-post inference on the number of jumps in

period t− 1, updated with contemporaneous (i.e., t− 1) information, while E (Nt−1|Ft−2)

is the forecast for the number of jumps made at time t − 2. The updated conditional

probability of Nt, P (Nt−1 = j|Ft−1), is obtained through a Bayesian updating of the ex-
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ante probability. We describe this posterior probability in (7) below.

The model setup in (1) implies that the total conditional variance of the return process

can be expressed as:

var(rt|Ft−1) = var(ε1,t|Ft−1) + var(ε2,t|Ft−1) (5)

= σ2
t + λt

(
θ2 + δ2

)
.

Specifically, (5) implies that the conditional variance for the jump innovation component

(second term on the right) contributes to the return variance and varies with the condi-

tional intensity λt: the higher the expected number of jumps, the greater the contribution

of the conditional jump innovation variance for the total conditional return variance. We

emphasize the important observation that jumps do not need to be realized, in order to

affect the conditional return variance. On the contrary, the variation in jump expectation,

i.e. λt, has an impact on the return distribution. For example, the conditional variance,

var(rt|Ft−1), increases with the expected jump size θ and jump size variance δ2.

1.2 Model Estimation

The GARCH-Jump model is estimated using the method of maximum likelihood. The

conditional density of returns, as well as the updated jump probability, are described

below. Conditional on information at time t− 1, the return density can be written as:

f (rt | Ft−1) =
∞∑
j=1

exp(−λt)λjt
j!

1√
2πσ2

t (1 + jδ2)
exp

(
(rt − µt − jθ + λtθ)

2

2σ2
t (1 + jδ2)

)
(6)

The infinite sum above can be truncated to obtain an approximation of the density in (6),

during the likelihood maximization process. Since the conditional volatility and inten-

sity, as well as the number of jumps, are unobserved processes/variables, the conditional

density is not available in closed form. All parameters—of the Poisson jump process, the

jump size distribution, and the conditional variance process—are estimated jointly via

6



numeric optimization of the likelihood function.

The ex-post probability of the number of jumps, updated with current information, is

obtained using Bayes’ theorem, as:

P (Nt = j | Ft) =

exp(−λt)λjt
j!

1√
2πσ2

t (1+jδ
2)
exp

(
(rt−µt−jθ+λtθ)2

2σ2
t (1+jδ

2)

)
f (rt | Ft−1)

. (7)

This filter could be used in jump occurrence identification and determining the ex-post

(observed) number of jumps. Jumps could be identified as the realized returns on the

days for which P (Nt = j | Ft) takes a value in excess of an exogenous threshold such as

0.9.

2 Data

Our sample consists of daily US-dollar denominated index return data for 38 markets—

15 emerging markets and 23 developed markets.2 The emerging markets (EM) are: Ar-

gentina, Brazil, Chile, Greece, Hungary, India, Indonesia, Mexico, Peru, Poland, Russia,

South Africa, Taiwan, Thailand, Turkey. The developed markets (DM) are: Australia,

Austria, Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Is-

rael, Italy, Japan, the Netherlands, New Zealand, Norway, Singapore, South Korea, Spain,

Sweden, Switzerland, United Kingdom, and United States. The data spans the period

from January 2, 1990 to December 31, 2015. A small number of countries have return data

series starting later than January 1990.3 The index price data is obtained from Thomson

Reuters’ Datastream.

Descriptive statistics for the index returns in our sample are reported in Table 1. EM

average daily return and volatility are larger than those of DM (0.02% versus 0.01% for
2Our classification of countries into emerging and developed markets categories follows that of S&P Dow Jones

Indices.
3India starts on Jan 3, 1991, Hungary and Poland on Dec 9, 1991, South Africa on Jul 3, 1995, Russia on Jul 11, 2000,

and New Zealand on Dec 27, 2000.
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average daily return and 2.2% versus 1.5% for average daily volatility). The average

skewness of EM returns, in contrast is lower than DM’s average skewness (-0.382 ver-

sus -0.201). We also observe that EM returns tend to be more autocorrelated than DM

returns on average, perhaps a reflection of differences in average market liquidity (0.054

versus 0.006 for average lag-1 autocorrelation coefficient).

3 Estimation Results

This section provides a discussion of the maximum-likelihood estimation results for the

GARCH-Jump model described in the previous section. For expositional brevity, we do

not report the parameter estimates for each country. Rather, in Table 2, averages of the

coefficient estimates over all markets, and over EM and DM separately, are reported. We

also utilize figures to compare specific estimated quantities across markets.

Parameter estimates summarized in Table 2 suggest that all model coefficients are

highly significant across markets. Turning first to the parameters of the jump intensity

processes, we observe that the estimate of φ1 has an average of 0.96, indicating that jump

intensities tend to be very persistent. This evidence is consistent with Maheu and Mc-

Curdy (2004)’s and Rangel (2011)’s. The estimate of φ2, with an average of 0.58 across

countries, suggests that around 58 percent of the forecast error (difference between ex-

pected and ex-post number of jumps at time t− 1) is made up for in the intensity value at

time t. This is indicative of a model that is able to react relatively quickly to the arrival of

new information relevant for the jump process.

The parameters of the GARCH volatility models in (1) are also highly significant: eq-

uity market volatility is very persistent, with an average β estimate of almost 0.9. This

evidence suggests that introducing jump dynamics into the return process does not sub-

sume the conditional volatility dynamics: normal equity return variations have the usual

cluster structure.

8



3.1 Expected Jump Size

The average value for the expected jump size θ is −0.43% across the whole sample of

markets and a bit higher, at −0.36%, for EM. An overwhelming majority of countries

have significantly negative expected jump size—80% of EM and all DM (bottom panel of

Table 2, and columns 4 and 6, respectively). Finally, the results in Table 2 suggest that

jump sizes vary, as indicated by the estimated standard deviations δ of the jump size

distributions for each country. The average δ estimate is 1.1 percent, with the EM average

close to twice as large as the DM average.

Figure 1 plots the θ estimates for each country, in percentages. There is a substantial

heterogeneity in the average jump size, somewhat greater for EM than for DM. Expected

jump size estimates range from −3.5% daily for Brazil through −1.5% daily for Mexico

and South Korea, to −0.3% daily for Chile and Denmark. We emphasize that direct com-

parisons of the expected jump magnitudes across countries are to be made with caution.

Our model identifies jumps endogenously by decomposing return variation into normal

and jump-related components. Thus, for a given return to be identified as a jump, it has

to be an “abnormal” return relative to normal (smooth) variation for that specific market.

That is, a return that constitutes a jump for market X may be normal variation for mar-

ket Y . Equity markets with large normal variation would naturally have large expected

jump sizes. Conversely, markets characterized by low normal variation could have lower

expected jump magnitudes.

3.2 Expected Number of Jumps

The autoregressive structure of the jump intensity in (2) allows us to compute the time-

series of conditional jump intensity, λt. The conditional intensity in period t, of course,

represents the expected number of jumps for that period, given information at time t− 1.

It is our proxy for jump risk.

Figure 2 plots the time-series medians of the expected number of jumps for each mar-
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ket. The number of jumps expected on a typical day exhibits substantial variation across

markets. Greece, Hungary, Taiwan, Denmark, and Japan stand out as the markets with

the highest median expected number of jumps, in the range of 0.4− 0.5 per day.

We should again note that jump risks are identified for each market separately and

endogenously. Thus, the nature of jumps can differ across markets. An ordinary DM

jump might not stand out and be considered as a jump in a typical EM, given the more

volatile nature of EM returns. Such differences also emerge in our estimation results. For

example, a market with a very large negative expected jump magnitude, such as Brazil

(around −3.5%), has a low expected daily incidence of jumps (around 0.1): jumps are

large in absolute sense and rare. In contrast, the average jump magnitude for Denmark is

lower than −0.5%. This, together with an expected number of jumps in the range of 0.4,

suggests that the Danish market is characterized by expected jumps that are relatively

more frequent and smaller in magnitude. Finally, the case of Greece is an interesting one,

as it brings together one of the smallest expected jump sizes (−0.06%) with the largest

number of jumps expected on a typical day (0.56). Combined with a relatively high stan-

dard deviation of the jumps size of 1.8% (unreported result), this evidence is indicative of

a market in which jumps, both negatively- and positively-signed, are frequent.

For all markets, jump risk (expected number of jumps) exhibits pronounced variation

through time. Figure 3 plots the cross-sectional medians of 21-day moving averages of

jump intensities. Medians are computed separately for the groups of 15 EM and 23 DM.

In general, jump risks for a typical emerging and developed market have remarkably

consistent time-series dynamic. The correlation between the two series of cross-sectional

medians is 0.63. In instances where jump risks spike, the median DM jump risk exceeds

its EM counterpart, sometimes substantially. We tentatively ascribe this to the relative

magnitudes of normal variability characterizing the typical DM and EM. Figure 4 docu-

ments that the time series median EM GARCH volatility exceeds the median DM GARCH

volatility at almost all times over the 1990-2015 period. The large normal variability of
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the return process in the typical EM implies that relatively few returns stand out as jumps

(and are endogenously identified by our model as such), in contrast to a typical DM. An

analogy one could consider is temperature comparison between a country close to the

Arctic circle and a tropical country. What constitutes ”cold” differs in the two countries:

a day of −10°C would be unheard of in the latter, whereas it would not make the news in

the former.

3.3 Contribution of Jumps to Total Return Variability

The degree to which jumps contribute to the total return variability can be determined by

computing the proportion of the estimated variance of the jump innovation, var(ε2,t |Ft−1),

to the total variance, var(rt | Ft−1), using the relationship in equation 5. Figure 5 plots the

average proportion of variance due to jumps for each market. We observe that jumps con-

tribution to total variability varies substantially across countries: from as little as about

10% for Brazil, up to almost 60% for Ireland, related to the interplay between expected

jump size θ, expected number of jumps λt, and normal return variation σt, as we ex-

plained above.

One could also reasonably expect that the proportion of variance due to jumps is not

constant through time. Indeed, periods of arrivals of important macroeconomic and fi-

nancial information and/or fluctuations in investor risk appetite are characterized by out-

size influence of jumps on the conditional variance. This argument is illustrated by Figure

6, which plots the cross-sectional median 21-day moving average proportion of variability

due to jumps, separately for EM and DM. Several features of the dynamics become ap-

parent. First, the proportion of total return variability due to jumps varies substantially:

from about 10% (a bit higher for EM) to about 70%. The proportion increases around peri-

ods of market distress, e.g., LTCM/Russia crisis of 1998 and financial crisis of 2008-2009.

Second, jumps contribution to the total return variability is in general higher for EM than

DM. This is consistent with the common characterization of EMs as less liquid and more
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volatile compared to DMs. Third, while EM and DM’s proportions of return variability

due to jumps tend to increase together, in some instances EM’s proportion remains ele-

vated, while DM’s has decreased. This seems to be attributable to the dynamics of the

jump risk λt and also evident in Figure 3, especially around 1998-1999 and 2008-2009.

After it peaks, jump risk for EM tends to decrease somewhat more slowly than for DM.

This is also consistent with the average estimated values of the φ2 coefficient in Table 2.

While DM’s average estimate of φ2 suggests that on average about 65% of λt’s forecast

error is made up for in the next period, for EM the corresponding value is 47%. That is,

EM jump risks tend to respond more slowly to changes in the information set than DM

jump risks. As we argue in Section 4, fluctuations (and possible EM versus DM hetero-

geneity) in global risk aversion and willingness for liquidity provision could be some of

the underlying drivers for the jump risk dynamics.

In Section 4, we investigate jump risk in greater depth, focusing on its commonality

across markets.

4 Commonality in Jump Risk

Is equity return jump risk market-specific or is it driven by common factors? Has the

degree of commonality increased through time? In this section, we discuss the evidence

of commonality in international equity jump risks, based on principal component analysis

(PCA).

4.1 Principal Component Analysis

Our proxy for jump risk at time t is the expected number of jumps, i.e., the conditional

intensity at time t, estimated from the model in Section 1.1. Since the daily returns we use

in our analysis are recorded in different geographical areas, they, as well as daily quanti-

ties, such as the conditional intensities, lack time synchronicity. To ensure comparability

of daily jump risks at time t, we perform the analysis in this section using their two-day
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moving averages.4 We continue to refer to the non-synchronicity-adjusted intensities as

“jump risks” or “intensities”.

First, we compute the correlation matrix of intensities (unreported).5 Pairwise corre-

lations tend to be large, reaching values in excess of 0.8 in some cases. For example, the

correlation between intensities of the United States and the United Kingdom is 0.85 and

that between intensities of France and Belgium is 0.91. All pairwise jump risk correla-

tions are positive, with an average of 0.58. The average pairwise correlation for the whole

sample of countries is 0.47. With this evidence in mind, we now turn to PCA of the jump

risks.

Panel A of Table 3 reports summary PCA results for the full sample period.6 We ob-

serve that there is strong commonality in the dynamics of jump risks. The first principal

component (PC1) explains 61.6% of the variation of jump risks, when we include all mar-

kets. The first five components together explain about 80% of the variation.7 Commonal-

ity is stronger among DM jump risks, for which PC1 accounts for 68.6% of the variation,

compared to 46% in the case of EM. In the latter, 15.2% and 10.6% of additional jump risk

variation are explained by the second and third components, respectively, suggesting fur-

ther heterogeneity of EM jump risk.

Commonality of jump risks strengthened during the recent financial crisis period.

PCA performed for the 2007-2010 period (Panel B) indicates that PC1 now explains 80.8%

of the jump risk variation in the whole sample. Similarly, its role increased for both DM

and EM: 87.1% and 67.7% explained variation, respectively. This finding supports and

extends the evidence in numerous studies, such as Longin and Solnik (2001), that inter-

national equity return correlations increase during bear markets and crisis periods.
4This approach has a parallel in the literature on international equity return modeling, where two-day moving

average return is used as the non-synchronicity-adjusted return (e.g., Forbes and Rigobon (2002)).
5We perform augmented Dickey-Fuller tests for all intensity series and verify that none of them is non-stationary.
6In order to obtain the longest time-series of data for the PCA, we exclude New Zealand and Russia, since their

return series have a late start.
7As a robustness check, we perform PCA using monthly conditional jump intensities. The conditional intensity in

month t is defined as the average conditional daily intensity within that month. PC1 of the monthly jump risks explains
about 64 percent of the variation. These results are available upon request.
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Finally, for the purpose of comparison, panel C of Table 3 reports PCA results for the

equity returns of the markets in our sample. The first component explains about 49%

of the variability of stock returns, while the first five components together explain about

66%. The comparison allows us to emphasize the crucial distinction between realized and

expected quantities: while expected jump risks are very correlated, realizations do not

need to be. This argument has important implications for international investors. Jump

risks being highly correlated implies that the diversification potential of an international

portfolio is in fact not as high as one would suspect by only analyzing realized returns

and/or realized jumps. We further discuss this topic in the next subsection.

The weighting vectors for the first two principal components are plotted in Figure

7. All weights (loadings) are positive: both EM and DM jump risks load positively on

the first principal component—a global jump risk factor. The second principal compo-

nent seems to capture the EM/DM distinction. All EM, as well as several Far East Asian

economies (Hong Kong, Japan, and Singapore), load positively on it, while most DM

weights are negative.

In conclusion, we establish that there is a global jump risk factor explaining much of

the variation in international markets’ jump risks. Preliminary evidence suggests time

variation in the proportion of explained variability: it increased substantially during the

2008-2009 financial crisis. Our analysis below focuses on understanding the behavior of

that risk factor.

4.2 The Global Jump Risk Factor

Figure 8 plots the time series of the global jump risk factor (PC1), where the factor’s obser-

vations are averages of the daily values within each month. Gray bands denote ten major

events that affected U.S. and/or global financial markets during the sample period. These

events are, in chronological order: Kuwait invasion and oil price shock (August 1990 ),

U.S. Treasury bond sell-off (March 1994 ), Russian crisis (August 1998), terrorist attack
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in the U.S (September 2001), stock market crash in the U.S. (Jul 2002), subprime mort-

gage crisis in the U.S. (Aug 2007), liquidity crisis (September 2008), U.S. equity market

flash crash (May 2010), European sovereign debt crisis (August 2011), and U.S. Treasury

flash crash (October 2014). We observe that many of the spikes in the global jump risk

factor occur simultaneously with these events, when changes in global uncertainty and

risk aversion, funding and liquidity shocks, and the consequent need for rebalancing of

international portfolios are likely to affect market participants’ expectations about asset

values.

To investigate further, we compute the correlation of the global jump risk factor with

variables capturing fluctuations in uncertainty and risk aversion. Table 4 reports the daily

correlation matrix of PC1, VIX, variance risk premium, TED spread, spread between U.S.

corporate high-yield bond yield to worst and 10-year Treasury yield, 3-month T-Bill yield,

and the S&P 500 return, for the period Jan 20, 2000 – Dec 31, 2015.8 We observe that the

jump risk factor is highly correlated with VIX (correlation of 0.74) and moderately cor-

related with the TED spread and the high-yield corporate spread variable (correlation of

about 0.5 for the latter two). This evidence is reminiscent of the finding of Pan and Sin-

gleton (2008) and Longstaff et al. (2011) in the context of sovereign credit risk. These two

papers document that sovereign risks have strong commonality, with the first principal

component of CDS spreads being highly correlated with VIX (correlation coefficient of

about 0.6).

That the jump risk factor is strongly correlated with VIX is not surprising. A large

volume of literature highlights the importance of VIX as a factor capturing uncertainty

and risk aversion for understanding global financial cycles (Rey (2015)), monetary policy

decision (Bekaert et al. (2013), capital flows (Forbes and Warnock (2012) and Bruno and

Shin (2015), among others), and asset prices (Bao et al. (2011) and Brunnermeier et al.
8We follow Bollerslev et al. (2009) in computing the daily variance risk premium as the difference in the squared

daily VIX levels and the total realized variation of S&P 500 return over the previous month. Daily realized variance
data is from the Oxford-Man Institute Realized Library. The yield spread between U.S. corporate high-yield bonds and
10-year Treasuries is taken from Bloomberg (CSI BARC Index).
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(2008), among others). It is, nevertheless, remarkable that jump risks of equity markets

with very disparate geographies and development level would co-move to the extent

that they do. Certainly, our evidence does not suggest that VIX is the factor driving jump

risks of international equity returns. Rather, we conjecture that both jump risks’ PC1 and

VIX proxy for a risk factor related to the risk aversion and/or willingness for liquidity

provision of global market players.

The dynamics of the global jump risk factor allows us also to make a contribution to

the debate on the existence and time-varying nature of the benefits of international diver-

sification. Bekaert et al. (2009) find no evidence for across-board increase in international

correlations, except for European markets, during the 1980-2005 period and argue that

benefits to diversification do exist. Pukthuanthong and Roll (2014) make a similar argu-

ment about diversification, based on realized equity return jumps being mostly idiosyn-

cratic. Our findings compel us to make a different conclusion. While return realizations

and realized jumps may be only weakly correlated across equity markets, expectations for

jumps (i.e., jump risks) are highly correlated. That jump risks co-move strongly, especially

during crisis periods, makes a strong case for a claim that the diversification potential of

an international portfolio is not as high as would seem, based on realized quantities. This

is, in fact, consistent with a “Peso problem”: the mere possibility and anticipation that

jumps may occur simultaneously could have implications for asset values.9

Finally, we provide evidence consistent with increasing market integration over the

past two decades. In Figure 9, we plot time series of the proportion of variability ex-

plained by PC1. The PCA is performed for a moving window of 5 years, using all markets

in the sample, as well as only DM. The first moving window is the period Jan 3, 1990 –

Dec 31, 1994, the second one is Jan 2, 1991 – Dec 31, 1995, and so on. As in the previ-

ous section, two-day averages of the conditional intensities are used, in order to account

for trading non-synchronicity. The graph suggests that the proportion of variability PC1

explains has been increasing steadily from about 25% in the early 1990s up to mid-60%
9See, for example, Veronesi (2004) and the references therein.
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in the last five-year period. This increased commonality is consistent with decreasing

diversification potential over time, as also argued by Christoffersen et al. (2012).

Crisis periods correspond to strengthening of jump risk commonality: the proportion

of explained variability shot up around both the dot-com bust in 2000-2001 and the credit

and liquidity crisis of 2008-2009. For the PCA based only on the group of DM, PC1’s

explained variability during the latter crisis period reached close to 90%: a sign of sharp

deterioration in diversification benefits within DM. We do observe a slight decline in com-

monality after the financial crisis, suggesting somewhat of a reversal or levelling-off in the

long-term trend.

5 Conclusion

We study jump risk in international equity returns, using a sample of 15 emerging and

23 developed markets. We use a modeling framework that endogenously differentiates

between abrupt return movements (jumps) and normal variation in returns which itself

could include large returns that are not jumps but arise during periods of high volatil-

ity. Our most important finding is that international jump risks are very correlated across

markets and have a distinct factor structure. Principal component analysis shows that

about 60% of jump risk variation across countries is attributable to a single factor and

that factor is highly correlated with the VIX index. Thus, local equity jump risks seem to

be driven to a large extent by changes in risk perceptions of global market participants:

the common component peaks in times of large uncertainty and risk aversion. Common-

ality in international jump risks has increased over time, reaching about 65% explained

variation due to the first principal component in the most recent five-year period.

We also establish that jumps are heterogeneous in terms of their expected jump mag-

nitudes, as well as expected frequency. EM jumps tend to have larger magnitudes but

are not necessarily more frequent. Consequently, a larger portion of a typical EM’s total

return variability could be attributed to jumps, compared to a typical DM’s.

17



Our findings are all new to the literature and have important contribution to the de-

bate on diversification benefits of international equities. The long sample period covers

time stretches of abundant liquidity and investor confidence, as well uncertainty and

increased risk aversion, thus validating the generality of our results. The evidence for

time-variation and commonality of jump risks could potentially have asset-pricing impli-

cations: increases in jump risk could require compensation in the form of a risk premium.
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Figures and Tables

Table 1: Descriptive Statistics
The table reports summary statistics for the daily USD-denominated equity index returns of the markets in the sample. The sample

period is Jan 2, 1990 – Dec 31, 2015. The means, standard deviations, minima, and maxima of returns are expressed in percentages.

Country Mean Std Min Max Skewness Kurtosis Lag-1 Corr

Emerging Markets

Argentina 0.009 2.931 -53.53 24.78 -1.592 36.08 0.005

Brazil 0.029 4.572 -71.20 72.18 0.580 95.52 -0.141

Chile 0.036 1.289 -14.96 16.95 0.082 21.86 0.030

Greece -0.006 2.047 -22.92 21.55 -0.107 11.73 0.089

Hungary 0.034 1.984 -20.53 15.51 -0.368 12.29 0.060

India 0.020 1.712 -15.67 18.52 -0.336 11.88 0.098

Indonesia 0.005 2.202 -39.80 22.37 -1.599 47.00 0.115

Mexico 0.036 1.920 -22.87 19.93 -0.376 17.92 0.081

Peru 0.065 1.640 -14.37 13.70 -0.042 10.86 0.185

Poland 0.034 2.159 -18.54 14.78 -0.220 9.56 0.066

Russia 0.035 2.370 -21.88 25.38 -0.352 15.30 0.021

S. Africa 0.015 1.693 -23.13 11.57 -0.890 14.93 0.038

Taiwan -0.011 1.765 -10.73 12.84 -0.194 6.94 0.034

Thailand -0.003 1.762 -15.67 15.24 -0.002 10.10 0.095

Turkey 0.022 3.079 -26.24 20.05 -0.315 9.11 0.034

Average, EM 0.021 2.208 -26.14 21.69 -0.382 22.07 0.054

Developed Markets

Australia 0.015 1.327 -15.28 13.69 -0.421 12.22 0.051

Austria -0.002 1.605 -12.66 14.19 -0.170 11.27 0.067

Belgium 0.015 1.384 -15.62 11.44 -0.339 11.25 0.032

21



Table 1 continued

Country Mean Std Min Max Skewness Kurtosis Lag-1 Corr

Canada 0.015 1.309 -13.27 9.66 -0.740 12.64 0.020

Denmark 0.034 1.359 -13.46 11.22 -0.252 9.53 0.013

Finland 0.017 2.093 -20.49 17.22 -0.290 9.80 -0.001

France 0.014 1.478 -11.51 12.13 -0.012 8.72 -0.022

Germany 0.014 1.548 -13.87 13.93 -0.061 8,77 -0.027

Hong Kong 0.026 1.506 -13.71 15.98 -0.069 11.94 0.025

Ireland 0.006 1.639 -19.04 14.38 -0.561 12.70 0.016

Israel 0.035 1.561 -12.94 12.17 -0.324 9.05 -0.035

Italy 0.001 1.638 -11.10 12.42 -0.118 7.58 0.004

Japan -0.012 1.619 -13.90 13.67 0.041 8.13 -0.067

Netherlands 0.017 1.398 -11.45 11.18 -0.091 9.08 -0.038

N. Zealand 0.024 1.100 -6.05 5.92 -0.362 5.58 0.012

Norway 0.011 1.745 -15.06 14.81 -0.462 10.67 0.000

Singapore 0.014 1.327 -10.40 11.42 -0.044 9.92 0.088

S. Korea 0.000 1.892 -15.47 21.57 -0.108 11.91 0.043

Spain 0.013 1.608 -11.55 14.68 0.002 8.92 0.021

Sweden 0.022 1.782 -10.48 15.50 0.049 7.99 0.011

Switzerland 0.029 1.240 -8.71 10.23 0.018 7.90 -0.032

United Kingdom 0.010 1.246 -10.46 12.11 -0.057 11.62 0.002

United States 0.027 1.136 -9.47 10.96 -0.239 11.64 -0.054

Average, DM 0.015 1.502 -12.87 13.06 -0.201 9.949 0.006
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Table 2: Maximum-Likelihood Estimates of the Jump-GARCH Model
The table reports summaries of the maximum-likelihood estimates for the GARCH-Jump model parameters. The entries in columns

(1), (3), and (5) are averages of the parameter estimates. The entries in columns (2), (4), and (6) are proportions of countries for which

the respective parameter is significantly positive or negative. Significance is identified on the basis of 5% significance level. A (+) or

(–) sign after a percentage denotes that significance is determined according to a one-sided test in the respective direction. E.g., ”92%

(–)” means that for 92% of countries the respective parameter is significantly negative. When a sign is missing after a percentage, the

respective hypothesis test is for parameter positivity.

Average,

ALL

(1)

Proportion of

significant

parameters,

ALL

(2)

Average,

EM

(3)

Proportion of

significant

parameters,

EM

(4)

Average,

DM

(5)

Proportion of

significant

parameters,

DM

(6)

µ× 100 0.028 53% (+) 0.044 80% (+) 0.016 35%

GARCH process parameters

ω 0.000 100% 0.000 100% 0.000 100%

α 0.038 100% 0.066 100% 0.019 100%

β 0.895 100% 0.811 100% 0.948 100%

Conditional intensity process parameters

φ0 0.020 100% 0.014 100% 0.023 100%

φ1 0.962 100% 0.968 100% 0.959 100%

φ2 0.577 100% 0.466 100% 0.650 100%

Jump-size distribution parameters

θ × 100 −0.427 92% (−) −0.364 80% −0.467 100% (−)

δ × 100 1.107 92% 1.481 93% 0.863 91%
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Table 3: Principal Component Analysis
The table reports results from principal component analysis (PCA) for the jump risks for the full sample period (panel A) and the 2007-

2010 period (panel B), and equity returns for the full sample period (panel C). Two-day moving averages of intensities and returns

are used, in order to account for trading non-synchronicity. Since New Zealand and Russia’s return time series start late, these two

countries are excluded from the PCA.

Principal

Component

Variation, All Markets Variation, DM Variation, EM

Explained Cumulative Explained Cumulative Explained Cumulative

Panel A. Jump Risks, Full Period

First 61.6% 61.6% 68.6% 68.6% 46.0% 46.0%

Second 8.3% 69.9% 6.6% 75.2% 15.2% 61.2%

Third 4.5% 74.3% 4.6% 79.8% 10.6% 71.8%

Fourth 3.0% 77.3% 2.8% 82.6% 6.6% 78.4%

Fifth 2.8% 80.1% 2.4% 85.0% 4.1% 82.5%

Panel B. Jump Risks, 2007 – 2010 Period

First 80.8% 80.8% 87.1% 87.1% 67.7% 67.7%

Second 6.1% 86.9% 3.4% 90.5% 17.0% 84.7%

Third 3.0% 89.9% 2.0% 92.5% 5.8% 90.5%

Fourth 1.5% 91.4% 1.5% 94.0% 2.5% 93.0%

Fifth 1.4% 92.8% 1.1% 95.1% 1.6% 94.6%

Panel C. Equity Returns, Full Period

First 48.8% 48.8% 52.6% 52.6% 40.0% 40.0%

Second 5.3% 54.1% 7.5% 60.1% 11.1% 51.1%

Third 4.7% 58.8% 5.9% 66.0% 10.5% 61.6%

Fourth 3.9% 62.7% 4.6% 70.6% 7.4% 69.0%

Fifth 3.1% 65.8% 4.1% 74.7% 5.2% 74.2%
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